
Python Library of toulbar2
Release 1.0.0

INRAE

Dec 05, 2023



CONTENTS

Index 11

i



Python Library of toulbar2, Release 1.0.0

pytoulbar2 software is the Python interface of toulbar2.

class pytoulbar2.CFN(ubinit=None, resolution=0, vac=0, configuration=False, vns=None, seed=1,
verbose=-1)

pytoulbar2 base class used to manipulate and solve a cost function network.

Constructor Args:
ubinit (decimal cost or None): initial upper bound. resolution (int): decimal precision of costs. vac (int):
if non zero, maximum solver depth minus one where virtual arc consistency algorithm is applied (1: VAC
only in preprocessing). configuration (bool): if True then special settings for preference learning using
incremental solving (see car configuration tutorial). vns (int or None): if None then solves using branch-
and-bound methods else using variable neighborhood search heuristic

(-1: initial solution at random, -2: minimum domain values, -3: maximum domain values,
-4: first solution found by DFS, >=0: or by LDS with at most vns discrepancies).

seed (int): random seed. verbose (int): verbosity control (-1: no message, 0: search statistics, 1: search
tree, 2-7: propagation information).

Members:
CFN (WeightedCSPSolver): python interface to C++ class WeightedCSPSolver.

Contradiction (exception): python exception corresponding to the same C++ class.

Limit (exception|None): contains the last SolverOut exception or None if no exception occurs when solving
with SolveNext.

Option (TouBar2): python interface to C++ class ToulBar2.

SolverOut (exception): python exception corresponding to the same C++ class.

Top (decimal cost): maximum decimal cost (it can be used to represent a forbidden cost).

VariableIndices (dict): associative array returning the variable name (str) associated to a given index (int).

VariableNames (list): array of created variable names (str) sorted by their index number.

See pytoulbar2test.py example in src repository.

AddAllDifferent(scope, encoding='binary', excepted=None, incremental=False)
Add AllDifferent hard global constraint.

Parameters

• scope (list) – input variables of the function. A variable can be represented by its name
(str) or its index (int).

• encoding (str) – encoding used to represent AllDifferent (available choices are ‘binary’
or ‘salldiff’ or ‘salldiffdp’ or ‘salldiffkp’ or ‘walldiff’).

• excepted (None or list) – list of excepted domain values which can be taken by any
variable without violating the constraint.

• incremental (bool) – if True then the constraint is backtrackable (i.e., it disappears when
restoring at a lower depth, see Store/Restore).

AddCompactFunction(scope, defcost, tuples, tcosts, incremental=False)
AddCompactFunction creates a cost function in extension. The scope corresponds to the input variables of
the function. The costs are given by a list of assignments with the corresponding list of costs, all the other
assignments taking the default cost.

Parameters

CONTENTS 1



Python Library of toulbar2, Release 1.0.0

• scope (list) – input variables of the function. A variable can be represented by its name
(str) or its index (int).

• defcost (decimal cost) – default cost.

• tuples (list) – array of assignments (each assignment is a list of domain values, follow-
ing the scope order).

• tcosts (list) – array of corresponding decimal costs (tcosts and tuples have the same
size).

• incremental (bool) – if True then the function is backtrackable (i.e., it disappears when
restoring at a lower depth, see Store/Restore).

Example

AddCompactFunction([‘x’,’y’,’z’],0,[[0,0,0],[1,1,1]],[1,-1]) encodes a ternary cost function with the null
assignment having a cost of 1, the identity assignment having a cost of -1, and all the other assignments a
cost of 0.

AddFunction(scope, costs, incremental=False)
AddFunction creates a cost function in extension. The scope corresponds to the input variables of the
function. The costs are given by a flat array the size of which corresponds to the product of initial domain
sizes (see note in AddVariable).

Parameters

• scope (list) – input variables of the function. A variable can be represented by its name
(str) or its index (int).

• costs (list) – array of decimal costs for all possible assignments (iterating first over the
domain values of the last variable in the scope).

• incremental (bool) – if True then the function is backtrackable (i.e., it disappears when
restoring at a lower depth, see Store/Restore).

Example

AddFunction([‘x’,’y’], [0,1,1,0]) encodes a binary cost function on Boolean variables x and y such that
(x=0,y=0) has a cost of 0, (x=0,y=1) has a cost of 1, (x=1,y=0) has a cost of 1, and (x=1,y=1) has a cost of
0.

AddGeneralizedLinearConstraint(tuples, operand='==', rightcoef=0)
AddGeneralizedLinearConstraint creates a linear constraint with integer coefficients associated to domain
values. The scope implicitely corresponds to the variables involved in the tuples. Missing domain values
have an implicit zero coefficient. All constant terms must belong to the right part.

Parameters

• tuples (list) – array of triplets (variable, domain value, coefficient) in the left part of
the constraint.

• operand (str) – can be either ‘==’ or ‘<=’ or ‘<’ or ‘>=’ or ‘>’.

• rightcoef (int) – constant term in the right part.

CONTENTS 2



Python Library of toulbar2, Release 1.0.0

Example

AddGeneralizedLinearConstraint([(‘x’,1,1),(‘y’,1,1),(‘z’,0,2)], ‘==’, 1) encodes (x==1) + (y==1) +
2*(z==0) = 1 assuming 0/1 variables and (x==u) is equal to 1 if value u is assigned to x else equal to
0.

AddGlobalFunction(scope, gcname, *parameters)
AddGlobalFunction creates a soft global cost function.

Parameters

• scope (list) – input variables of the function. A variable can be represented by its name
(str) or its index (int).

• gcname (str) – name of the global cost function (see toulbar2 user documentation).

• parameters (list) – list of parameters (str or int) for this global cost function.

Example

AddGlobalFunction([‘x1’,’x2’,’x3’,’x4’], ‘wamong’, ‘hard’, 1000, 2, 1, 2, 1, 3) encodes a hard among con-
straint satisfied iff values {1,2} are assigned to the given variables at least once and at most 3 times, other-
wise it returns a cost of 1000.

AddLinearConstraint(coefs, scope, operand='==', rightcoef=0)
AddLinearConstraint creates a linear constraint with integer coefficients. The scope corresponds to the
variables involved in the left part of the constraint. All variables must belong to the left part (change their
coefficient sign if they are originally in the right part). All constant terms must belong to the rigt part.

Parameters

• coefs (list or int) – array of integer coefficients associated to the left-part variables
(or the same integer coefficient is applied to all variables).

• scope (list) – variables involved in the left part of the constraint. A variable can be
represented by its name (str) or its index (int).

• operand (str) – can be either ‘==’ or ‘<=’ or ‘<’ or ‘>=’ or ‘>’.

• rightcoef (int) – constant term in the right part.

Example

AddLinearConstraint([1,1,-2], [x,y,z], ‘==’, -1) encodes x + y -2z = -1.

AddSumConstraint(scope, operand='==', rightcoef=0)
AddSumConstraint creates a linear constraint with unit coefficients. The scope corresponds to the variables
involved in the left part of the constraint.

Parameters

• scope (list) – variables involved in the left part of the constraint. A variable can be
represented by its name (str) or its index (int).

• operand (str) – can be either ‘==’ or ‘<=’ or ‘<’ or ‘>=’ or ‘>’.

• rightcoef (int) – constant term in the right part.

CONTENTS 3



Python Library of toulbar2, Release 1.0.0

Example

AddSumConstraint([x,y,z], ‘<’, 3) encodes x + y + z < 3.

AddVariable(name, values)
AddVariable creates a new discrete variable.

Parameters

• name (str) – variable name.

• values (list or iterable) – list of domain values represented by numerical (int) or
symbolic (str) values.

Returns
Index of the created variable in the problem (int).

Note: Symbolic values are implicitely associated to integer values (starting from zero) in the other func-
tions. In case of numerical values, the initial domain size is equal to max(values)-min(values)+1 and not
equal to len(values). Otherwise (symbolic case), the initial domain size is equal to len(values).

AddWeightedCSPConstraint(problem, lb, ub, duplicateHard=False, strongDuality=False)
AddWeightedCSPConstraint creates a hard global constraint on the cost of an input weighted constraint
satisfaction problem such that its valid solutions must have a cost value in [lb,ub[.

Parameters

• problem (CFN) – input problem.

• lb (decimal cost) – any valid solution in the input problem must have a cost greater than
or equal to lb.

• ub (decimal cost) – any valid solution in the input problem must have a cost strictly less
than ub.

• duplicateHard (bool) – if true then it assumes any forbidden tuple in the original input
problem is also forbidden by another constraint in the main model (you must duplicate any
hard constraints in your input model into the main model).

• strongDuality (bool) – if true then it assumes the propagation is complete when all
channeling variables in the scope are assigned and the semantic of the constraint enforces
that the optimum and ONLY the optimum on the remaining variables is between lb and ub.

Note: If a variable in the input problem does not exist in the current problem (with the same name), it is
automatically added.

Example

m=tb2.CFN(); m.Read(“master.cfn”);s=tb2.CFN();s.Read(“slave.cfn”);m.AddWeightedCSPConstraint(s,
lb, ub);m.Solve()

Assign(var, value)
Assign assigns a variable to a domain value.

Parameters

• var (int|str) – variable name or its index as returned by AddVariable.

CONTENTS 4



Python Library of toulbar2, Release 1.0.0

• value (int) – domain value.

ClearPropagationQueues()

ClearPropagationQueues resets propagation queues. It should be called when an exception Contradiction
occurs.

Deconnect(var)
Deconnect deconnects a variable from the rest of the problem and assigns it to its support value.

Parameters
var (int|str) – variable name or its index as returned by AddVariable.

Decrease(var, value)
Decrease removes the last values strictly greater than a given value in the domain of a variable.

Parameters

• var (int|str) – variable name or its index as returned by AddVariable.

• value (int) – domain value.

Depth()

Depth returns the current solver depth value.

Returns
Current solver depth value (int).

Domain(var)
Domain returns the current domain of a given variable.

Parameters
var (int|str) – variable name or its index as returned by AddVariable.

Returns
List of domain values (list).

Dump(filename)
Dump outputs the problem in a file (without doing any preprocessing).

Parameters
filename (str) – problem filename. The suffix must be ‘.wcsp’ or ‘.cfn’ to select in which
format to save the problem.

GetDDualBound()

GetDDualBound returns the global problem lower bound in minimization (resp. upper bound in maximiza-
tion) found after doing an incomplete search with Solve.

Returns
Global lower bound (decimal cost).

GetLB()

GetLB returns the current problem lower bound.

Returns
Current lower bound (decimal cost).

GetName()

GetName get the name of the CFN.

Returns
Name of the CFN (string).

CONTENTS 5



Python Library of toulbar2, Release 1.0.0

GetNbBacktracks()

GetNbBacktracks returns the number of backtracks done so far.

Returns
Current number of backtracks (int).

GetNbConstrs()

GetNbConstrs returns the number of non-unary cost functions.

Returns
Number of non-unary cost functions (int).

GetNbNodes()

GetNbNodes returns the number of search nodes explored so far.

Returns
Current number of search nodes (int).

GetNbVars()

GetNbVars returns the number of variables.

Returns
Number of variables (int).

GetSolutions()

GetSolutions returns all the solutions found so far with their associated costs.

Returns
List of pairs (decimal cost, solution) where a solution is a list of domain values.

GetUB()

GetUB returns the initial upper bound.

Returns
Current initial upper bound (decimal cost).

Increase(var, value)
Increase removes the first values strictly lower than a given value in the domain of a variable.

Parameters

• var (int|str) – variable name or its index as returned by AddVariable.

• value (int) – domain value.

InitFromMultiCFN(multicfn)
InitFromMultiCFN initializes the cfn from a multiCFN instance (linear combination of multiple CFN).

Parameters
multicfn (MultiCFN) – the instance containing the CFNs.

Note: After beeing initialized, it is possible to add cost functions to the CFN but the upper bound may be
inconsistent.

MultipleAssign(vars, values)
MultipleAssign assigns several variables at once.

Parameters

• vars (list) – list of indexes or names of variables.

CONTENTS 6



Python Library of toulbar2, Release 1.0.0

• values (list) – list of domain values.

MultipleDeconnect(vars)
MultipleDeconnect deconnects a set of variables from the rest of the problem and assigns them to their
support value.

Parameters
vars (list) – list of indexes or names of variables.

NoPreprocessing()

NoPreprocessing deactivates most preprocessing methods.

Parse(certificate)
Parse performs a list of elementary reduction operations on domains of variables.

Parameters
certificate (str) – a string composed of a list of operations on domains, each operation
in the form ‘,varIndex[=#<>]value’ where varIndex (int) is the index of a variable as returned
by AddVariable and value (int) is a domain value (comma is mandatory even for the first oper-
ation, add no space). Possible operations are: assign (‘=’), remove (‘#’), decrease maximum
value (‘<’), increase minimum value (‘>’).

Example

Parse(‘,0=1,1=1,2#0’): assigns the first and second variable to value 1 and remove value 0 from the third
variable.

Print()

Print prints the content of the CFN (variables, cost functions).

Read(filename)
Read reads the problem from a file.

Parameters
filename (str) – problem filename.

Remove(var, value)
Remove removes a value from the domain of a variable.

Parameters

• var (int|str) – variable name or its index as returned by AddVariable.

• value (int) – domain value.

Restore(depth)
Restore retrieves the copy made at a given solver depth value.

Parameters
depth (int) – solver depth value. It must be lower than the current solver depth.

SetName(name)
SetName set the name of the CFN.

Parameters
name (str) – the new name of the CFN.

CONTENTS 7



Python Library of toulbar2, Release 1.0.0

SetUB(cost)
SetUB resets the initial upper bound to a given value. It should be done before modifying the problem.

Parameters
cost (decimal cost) – new initial upper bound.

Solve(showSolutions=0, allSolutions=0, diversityBound=0, timeLimit=0, writeSolution='')
Solve solves the problem (i.e., finds its optimum and proves optimality). It can also enumerate (diverse)
solutions depending on the arguments.

Parameters

• showSolutions (int) – prints solution(s) found (0: show nothing, 1: domain values, 2:
variable names with their assigned values, 3: variable and value names).

• allSolutions (int) – if non-zero, enumerates all the solutions with a cost strictly better
than the initial upper bound until a given limit on the number of solutions is reached.

• diversityBound (int) – if non-zero, finds a greedy sequence of diverse solutions where
a solution in the list is optimal such that it also has a Hamming-distance from the previously
found solutions greater than a given bound. The number of diverse solutions is bounded
by the argument value of allSolutions.

• timeLimit (int) – CPU-time limit in seconds (or 0 if no time limit)

• writeSolution (str) – write best solution found in a file using a given file name and
using the same format as showSolutions (or write all solutions if allSolutions is non-zero)

Returns
The best (or last if enumeration/diversity) solution found as a list of domain values, its as-
sociated cost, always strictly lower than the initial upper bound, and the number of solutions
found (returned type: tuple(list, decimal cost, int)). or None if no solution has been found
(the problem has no solution better than the initial upper bound or a search limit occurs). See
GetSolutions to retrieve of the solutions found so far. See GetDDualBound to retrieve of the
global problem dual bound found so far.

Warning: This operation cannot be called multiple times on the same CFN object (it may modify the
problem or its upper bound).

SolveFirst()

SolveFirst performs problem preprocessing before doing incremental solving.

Returns
Initial upper bound (decimal cost), possibly improved by considering a worst-case situation
based on the sum of maximum finite cost per function plus one. or None if the problem has
no solution (a contradiction occurs during preprocessing).

Warning: This operation must be done at solver depth 0 (see Depth).

Warning: This operation cannot be called multiple times on the same CFN object.

SolveNext(showSolutions=0, timeLimit=0)
SolveNext solves the problem (i.e., finds its optimum and proves optimality). It should be done after calling
SolveFirst and modifying the problem if necessary.

CONTENTS 8



Python Library of toulbar2, Release 1.0.0

Parameters

• showSolutions (int) – prints solution(s) found (0: show nothing, 1: domain values, 2:
variable names with their assigned values, 3: variable and value names).

• timeLimit (int) – CPU-time limit in seconds (or 0 if no time limit)

Returns
The best solution found as a list of domain values, its associated cost, always strictly lower
than the initial upper bound, and None (returned type: tuple(list, decimal cost, None)). or
None if no solution has been found (the problem has no solution better than the initial upper
bound or a search limit occurs, see Limit).

Store()

Store makes a copy (incremental) of the current problem and increases the solver depth by one.

UpdateUB(cost)
UpdateUB decreases the initial upper bound to a given value. Does nothing if this value is greater than the
current upper bound.

Parameters
cost (decimal cost) – new initial upper bound.

Warning: This operation might generate a Contradiction if the new upper bound is lower than or equal
to the problem lower bound.

static flatten(S)

class pytoulbar2.MultiCFN

pytoulbar2 base class used to combine linearly multiple CFN.

Members:
MultiCFN: python interface to C++ class MultiCFN.

ApproximateParetoFront(first_criterion, first_direction, second_criterion, second_direction)
ApproximateParetoFront returns the set of supported solutions of the problem on two criteria (on the convex
hull of the non dominated solutions).

Parameters

• first_criterion (int) – index of the first CFN to optimize.

• first_direction (str) – direction of the first criterion: ‘min’ or ‘max’.

• second_criterion (int) – index of the second CFN to optimize.

• second_direction (str) – direction of the second criterion: ‘min’ or ‘max’.

Returns
The non dominated solutions belonging to the convex hull of the pareto front and their costs
(tuple).

GetSolution()

GetSolution returns the solution of a the combined cfn after being solved.

Returns
The solution of the cfn (dic).

CONTENTS 9



Python Library of toulbar2, Release 1.0.0

GetSolutionCosts()

GetSolutionCosts returns the costs of the combined cfn after being solved.

Returns
The costs of the solution of the cfn (list).

Print()

Print print the content of the multiCFN: variables, cost functions.

PushCFN(CFN , weight=1.0)
PushCFN add a CFN to the instance.

Parameters

• CFN (CFN) – the new CFN to add.

• weight (float) – the initial weight of the CFN in the combination.

SetWeight(cfn_index, weight)
SetWeight set a weight of a CFN.

Parameters

• cfn_index (int) – index of the CFN (in addition order).

• weight (float) – the new weight of the CFN.

CONTENTS 10



INDEX

A
AddAllDifferent() (pytoulbar2.CFN method), 1
AddCompactFunction() (pytoulbar2.CFN method), 1
AddFunction() (pytoulbar2.CFN method), 2
AddGeneralizedLinearConstraint() (pytoul-

bar2.CFN method), 2
AddGlobalFunction() (pytoulbar2.CFN method), 3
AddLinearConstraint() (pytoulbar2.CFN method), 3
AddSumConstraint() (pytoulbar2.CFN method), 3
AddVariable() (pytoulbar2.CFN method), 4
AddWeightedCSPConstraint() (pytoulbar2.CFN

method), 4
ApproximateParetoFront() (pytoulbar2.MultiCFN

method), 9
Assign() (pytoulbar2.CFN method), 4

C
CFN (class in pytoulbar2), 1
ClearPropagationQueues() (pytoulbar2.CFN

method), 5

D
Deconnect() (pytoulbar2.CFN method), 5
Decrease() (pytoulbar2.CFN method), 5
Depth() (pytoulbar2.CFN method), 5
Domain() (pytoulbar2.CFN method), 5
Dump() (pytoulbar2.CFN method), 5

F
flatten() (pytoulbar2.CFN static method), 9

G
GetDDualBound() (pytoulbar2.CFN method), 5
GetLB() (pytoulbar2.CFN method), 5
GetName() (pytoulbar2.CFN method), 5
GetNbBacktracks() (pytoulbar2.CFN method), 5
GetNbConstrs() (pytoulbar2.CFN method), 6
GetNbNodes() (pytoulbar2.CFN method), 6
GetNbVars() (pytoulbar2.CFN method), 6
GetSolution() (pytoulbar2.MultiCFN method), 9
GetSolutionCosts() (pytoulbar2.MultiCFN method),

9

GetSolutions() (pytoulbar2.CFN method), 6
GetUB() (pytoulbar2.CFN method), 6

I
Increase() (pytoulbar2.CFN method), 6
InitFromMultiCFN() (pytoulbar2.CFN method), 6

M
MultiCFN (class in pytoulbar2), 9
MultipleAssign() (pytoulbar2.CFN method), 6
MultipleDeconnect() (pytoulbar2.CFN method), 7

N
NoPreprocessing() (pytoulbar2.CFN method), 7

P
Parse() (pytoulbar2.CFN method), 7
Print() (pytoulbar2.CFN method), 7
Print() (pytoulbar2.MultiCFN method), 10
PushCFN() (pytoulbar2.MultiCFN method), 10

R
Read() (pytoulbar2.CFN method), 7
Remove() (pytoulbar2.CFN method), 7
Restore() (pytoulbar2.CFN method), 7

S
SetName() (pytoulbar2.CFN method), 7
SetUB() (pytoulbar2.CFN method), 7
SetWeight() (pytoulbar2.MultiCFN method), 10
Solve() (pytoulbar2.CFN method), 8
SolveFirst() (pytoulbar2.CFN method), 8
SolveNext() (pytoulbar2.CFN method), 8
Store() (pytoulbar2.CFN method), 9

U
UpdateUB() (pytoulbar2.CFN method), 9

11


	Index

